Research interests ✓ Nanotechnology, material science, nanoparticles: synthesis and properties of colloidal particles, preparation of novel materials ✓ Physical chemistry, surface chemistry: self-assembly at soft interfaces (liquid-liquid, liquid-air, etc.) ✓ Electrochemistry: investigation of properties of nanoparticles and their assemblies, in particular, for photocatalytic and electrocatalytic applications ✓ Analytical chemistry: application of nanoparticles and their assemblies for surface enhanced methods, for example, SERS, as well as in ELISA-based methods Features of the PhD program Analytical chemistry: application of foreign scientific contacts – the University of Limerick, Ireland (self-assembly and electrochemistry), the University of Turku, Finland (electrochemistry), the University of Turku, Finland (electrochemistry), the University of Oldenburg, Germany (electrochemistry), the University of Gold and silver nanoparticles at liquid-liquid interfaces as a platform for Surface Enhanced Rama Spectroscopy (supervision) ✓ RSCF № 22-73-00206 Self-assembly of gold and silver nanoparticles at liquid-liquid interfaces as a platform for Surface Enhanced Assen Spectroscopy (supervision) ✓ RSCF № 20-13-0030 Development of fluorescent sensor platforms based on composite materials for the determination of biologically active compounds in complex matrices (researcher) List of potential thesis topics ✓ Self-assembly of (non)metallic nanoparticles at soft interfaces and their materials (graphene, graphene oxide, MXene) at soft interfaces and investigation of their properties (optical, catalytic and electrocatalytic) ✓ Self-assembly of 12D materials (graphen		SMIRNOV, Evgeny A. PhD
both self-made and within the CCU. In addition to the capabilities of the Infochemistry Research Center, the leader has a wide network of foreign scientific contacts the University of Limerick, Ireland (self-assembly and electrochemistry), the University of Turku, Finland (electrochemistry), the University of Oldenburg, Germany (electrochemistry), the University of Self-assembly of gold and silver nanoparticles at liquid-liquid interfaces as a platform for Surface Enhanced Raman Spectroscopy (supervision) TSITIS №AAAA-A20-120121790037-7 Development of technology for obtaining sunflower protein isolate (researcher) RSCF № 20-13-00330 Development of fluorescent sensor platforms based on composite materials for the determination of biologically active compounds in complex matrices (researcher) List of potential thesis topics Self-assembly of 2D materials (graphene, graphene oxide, MXene) at soft interfaces and investigation of their properties (optical, catalytic and electrocatalytic) Sensing elemen	Research interests	 properties of colloidal particles, preparation of novel materials Physical chemistry, surface chemistry: self-assembly at soft interfaces (liquid-liquid, liquid-air, etc.) Electrochemistry: investigation of properties of nanoparticles and their assemblies, in particular, for photocatalytic and electrocatalytic applications Analytical chemistry: application of nanoparticles and their assemblies for surface enhanced methods, for example, SERS,
 List of the supervisor's research projects (participation/supervision) ✓ RSCF № 22-73-00206 Self-assembly of gold and silver nanoparticles at liquid-liquid interfaces as a platform for Surface Enhanced Raman Spectroscopy (supervision) ✓ TSITIS №AAAA-A20-120121790037-7 Development of technology for obtaining sunflower protein isolate (researcher) ✓ RSCF № 20-13-00330 Development of fluorescent sensor platforms based on composite materials for the determination of biologically active compounds in complex matrices (researcher) List of potential thesis topics ✓ Self-assembly of (non)metallic nanoparticles at soft interfaces and their implementation for optics, catalytic and electrocatalytic applications ✓ Self-assembly of 2D materials (graphene, graphene oxide, MXene) at soft interfaces and investigation of their properties (optical, catalytic and electrocatalytic) ✓ Sensing elements based on in-situ generation of reagents (in particular, ELISA sensors with H2O2 in-situ generation) 	Features of the PhD program	both self-made and within the CCU. In addition to the capabilities of the Infochemistry Research Center, the leader has a wide network of foreign scientific contacts - the University of Limerick, Ireland (self-assembly and electrochemistry), the University of Turku, Finland (electrochemistry), the University of Oldenburg, Germany (electrochemistry and nanotechnology), Fudan University, China (analytical chemistry). As a part of the grant work, postgraduate students will be provided
 (participation/supervision) Surface Enhanced Raman Spectroscopy (supervision) ✓ TSITIS №AAAA-A20-120121790037-7 Development of technology for obtaining sunflower protein isolate (researcher) ✓ RSCF № 20-13-00330 Development of fluorescent sensor platforms based on composite materials for the determination of biologically active compounds in complex matrices (researcher) List of potential thesis topics ✓ Self-assembly of (non)metallic nanoparticles at soft interfaces and their implementation for optics, catalytic and electrocatalytic applications ✓ Self-assembly of 2D materials (graphene, graphene oxide, MXene) at soft interfaces and investigation of their properties (optical, catalytic and electrocatalytic) ✓ Sensing elements based on in-situ generation of reagents (in particular, ELISA sensors with H2O2 in-situ generation) 	List of the supervisor's	
 ✓ TSITIS №AAAA-A20-120121790037-7 Development of technology for obtaining sunflower protein isolate (researcher) ✓ RSCF № 20-13-00330 Development of fluorescent sensor platforms based on composite materials for the determination of biologically active compounds in complex matrices (researcher) List of potential thesis topics ✓ Self-assembly of (non)metallic nanoparticles at soft interfaces and their implementation for optics, catalytic and electrocatalytic applications ✓ Self-assembly of 2D materials (graphene, graphene oxide, MXene) at soft interfaces and investigation of their properties (optical, catalytic and electrocatalytic) ✓ Sensing elements based on in-situ generation of reagents (in particular, ELISA sensors with H2O2 in-situ generation) 	-	
 and their implementation for optics, catalytic and electrocatalytic applications ✓ Self-assembly of 2D materials (graphene, graphene oxide, MXene) at soft interfaces and investigation of their properties (optical, catalytic and electrocatalytic) ✓ Sensing elements based on in-situ generation of reagents (in particular, ELISA sensors with H2O2 in-situ generation) 	(participation/supervision)	 ✓ TSITIS №AAAA-A20-120121790037-7 Development of technology for obtaining sunflower protein isolate (researcher) ✓ RSCF № 20-13-00330 Development of fluorescent sensor platforms based on composite materials for the determination of biologically active compounds in complex matrices (researcher)
	List of potential thesis topics	 and their implementation for optics, catalytic and electrocatalytic applications ✓ Self-assembly of 2D materials (graphene, graphene oxide, MXene) at soft interfaces and investigation of their properties (optical, catalytic and electrocatalytic) ✓ Sensing elements based on in-situ generation of reagents (in
	Publications in the last five	13 (Scopus / Web of Science / RSCI)
years		

Key publications	1. E. Smirnov, 2018, Assemblies of Gold Nanoparticles at Liquid-
	Liquid Interfaces (Springer Theses Series), Springer International Publishing, Cham, 2018, 270. DOI: 10.1007/978-3-319-77914-0
	2. M. D. Scanlon, E. Smirnov, T. J. Stockmann, P. Peljo, Gold nanofilms at liquid-liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors and electrovariable optics, Chem. Rev., 118, 2018, 3722-3751. Q1 (1999), SRJ = 20.53. DOI: 10.1021/acs.chemrev.7b00595. Front page: https://pubs.acs.org/toc/chreay/118/7
	3. E. Smirnov, P. Peljo, H. H. Girault, Gold Raspberry-Like Colloidosomes Prepared at the Water-Nitromethane Interface, Langmuir, 34, 2018, 2758-2763. Q1 (1999), SRJ = 1.04. DOI: 10.1021/acs.langmuir.7b03532
	4. P. Peljo, M.D. Scanlon, A.J. Olaya, L.Rivier, E. Smirnov, and H. Girault, Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties Without the Influence of Solid Supports, J. Phys. Chem. Lett., 8, 2017, 3564–3575. Q1 (1999), SRJ = 2.56. DOI: 10.1021/acs.jpclett.7b00685
	5. E. Smirnov, P. Peljo and H. Girault, Self-assembly and redox induced phase transfer of gold nanoparticles at the waterpropylene carbonate interface, Chem. Comm., 53, 2017, 4108-4111. Q1 (1999), SRJ = 1.84. DOI: 10.1039/C6CC09638G
Key IPs	Patent application. A.E. Kuropteva, E.A. Smirnov, I.A. Vweselova, Patent application № 2022118324, Hydrogene Peroxide Generation Method for Application in Spectrophotometric, Colorimetric and Luminescent Analysis with Peroxidase, 2022
Supervisor's specific	✓ Background in inorganic chemistry, physical chemistry, or
requirements	 biochemistry Hands-on-experience in laboratory and with basic laboratory equipment: mixers, heaters, glassware, pH-meters, conductometers etc.
	 ✓ Analytical methods: SEM/TEM, DLS, spectroscopy (UV-Vis- IR), Raman ✓ Software: Office, OriginLab, ImageJ, script-writing Python or Wolfram Mathematica is welcomed
Code of the subject area of the	1.4.4 Physical Chemistry
PhD program	