	KRIVOSHAPKIN, Pavel V.
Carry N	Doctor of Chemical Sciences (Institute of Silicate Chemistry of
	the Russian Academy of Sciences, 2019)
Research interests	✓ Nanomaterials and interactions in colloids. The head has
Research interests	developed and proposed a semi- empirical physicochemical
	model that makes it possible to predict the processes of
	interaction of nanosized particles of metal oxides at the
	surface boundary of functional materials of various nature
	(polymer, carbon or ceramic objects). A concept is proposed
	for the formation of nanostructured layers of metal oxides by
	controlling the chemical nature of the surface, morphology and electrical surface characteristics of both the materials
	themselves and the particles of metal oxides. The principles
	of the formation of hybrid systems based on nanosized
	particles of biopolymers, carbon, and metals / metal oxides
	have been studied.
	✓ Nanomedicine. Unique complex interdisciplinary data on the
	development and study of multifunctional nanoplatforms -
	radiosensitizers of a new generation - biocompatible ceramic
	nanoparticles (nanoantennas) based on metal oxides with
	specified structure, morphology and properties have been
	obtained.
	✓ Sustainable Chemistry for Energy Technologies. An
	integrated approach to the treatment and processing of
	wastewater and gas emissions from pollution, heavy metals.
	Capture, storage and processing of various molecules,
	including carbon dioxide. Alternative energy sources.
Features of the PhD program	Collaboration with Universities, financial support for graduate
List of the series ?	students
List of the supervisor's research	✓ Grant RFBR No. 18-29-11078. Ceramic nanoantennas for
projects (participation/supervision)	theranostics of tumors, 2018-2021 (supervision)
	✓ Grant RFBR No. 19-33-90194. Synthesis and study of
	colloidal chemical properties of tantalum oxide dispersions (V), 2019-2020 (supervision)
	 ✓ ITMO Research and Development Grant No. 617025.
	Development and analysis of delivery systems for organo-
	 inorganic molecular machines, 2019-2020 (supervision) ✓ RSF grant No. 22-23-00790. Additive and biosynthetic
	approaches for obtaining hybrid materials based on natural
	scleroproteins, 2022-2023 (supervision)
	✓ ITMO Research and Development Grant No. 620155. Hybrid
	materials based on biopolymers and inorganic nanoparticles:
List of potential thesis to size	design and application (supervision)
List of potential thesis topics	✓ Smart materials for wastewater treatment from metal ions

	\checkmark Development of magnetic materials for water splitting
	processes
	 Development of catalysts for CO2RR to obtain value-added products
	87 (Scopus / Web of Science / RSCI)
years Key publications	1. Detection and adsorption of Cr (VI) ions by mesoporous Fe- alumina films. Vasily I Mikhaylov, Elena F Krivoshapkina, Alexander L Trigub, Valery V Stalugin, Pavel V Krivoshapkin. ACS Sustainable Chemistry & Engineering 2018, 6, 7. https://doi.org/10.1021/acssuschemeng.8b01598 (IF=14.3, Q1(2021))
	2. VI Mikhaylov, TP Maslennikova, EF Krivoshapkina, EM Tropnikov, PV Krivoshapkin. Express Al/Fe oxide– oxyhydroxide sorbent systems for Cr (VI) removal from aqueous solutions. Chemical Engineering Journal 2018, 350, 344-355. https://doi.org/10.1016/j.cej.2018.05.023 (IF= 16.744, Q1(2021))
	3. Igor A Perovskiy, Elena V Khramenkova, Evgeny A Pidko, Pavel V Krivoshapkin, Alexandr V Vinogradov, Elena F Krivoshapkina.Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents. Chemical Engineering Journal 2018, 354, 727-739. https://doi.org/10.1016/j.cej.2018.08.030 (IF= 16.744, Q1(2021))
	4. Nanochitin/manganese oxide-biodegradable hybrid sorbent for heavy metal ions. PV Krivoshapkin, AI Ivanets, MA Torlopov, VI Mikhaylov, V Srivastava, M Sillanpää, VG Prozorovich, TF Kouznetsova, ED Koshevaya, EF Krivoshapkina. Carbohydrate polymers 2019, 210, 35-143. https://doi.org/10.1016/j.carbpol.2019.01.045 (IF=10.723, Q1(2021))
	5. Optically active hybrid materials based on natural spider silk. Aleksandra Kiseleva, Grigorii Kiselev, Vadim Kessler, Gulaim Seisenbaeva, Dmitry Gets, Valeriya Rumyantseva, Tatiana Lyalina, Anna Fakhardo, Pavel Krivoshapkin, Elena Krivoshapkina. ACS applied materials & interfaces 2019, 11, 26. https://doi.org/10.1021/acsami.9b05131 (IF= 14.4, Q1(2021))
1 1	Knowledge of the "Physical Chemistry" discipline
requirements Code of the subject area of the	1.4.1 Inorganic Chemistry
5	1.4.4 Physical Chemistry