| | GLYBOVSKI, Stanislav B. Doctor of Physical and Mathematical Sciences Associate Professor | |--|--| | Research interests | ✓ Antenna theory ✓ Microwave measurements ✓ Computational electromagnetics ✓ Metamaterials ✓ RF-coils for MRI | | Features of the PhD program | Postgraduate studies last for four years. During this time, a postgraduate student must publish at least three articles (Scopus/WoS, Q1-Q2), take part in three international conferences, and attend four courses. | | List of the supervisor's research projects (participation/supervision) | ✓ Achieving the ultimate performance of microwave devices using spatial dispersion effects ✓ Synthesis of the radiation field in antenna systems based on meta-structures ✓ Development of a dual-frequency lens structure using meta-structures for a subscriber terminal of a satellite communication system and study of its characteristics in an anechoic chamber ✓ Development of wireless energy transmission systems and devices for use in arctic conditions | | List of potential thesis topics | ✓ Conducting research on the electrodynamic properties of metasurfaces in the microwave range ✓ Development of antennas and various microwave devices using metastructures | | Publications in the last five | 38 | | Key publications | Popov M.M., Glybovski S.B., Tatarnikov D.V. Semitransparent magnetic metasurface screens with modulated impedance for mitigation of radiation in the shadow domain//Photonics and Nanostructures - Fundamentals and Applications, 2025, Vol. 63, pp. 101363 Deriy I., Lezhennikova K., Glybovsky S.B., Iorsh I., Yermakov O.Y., Song M., Abdeddaim R., Enoch S., Belov P.A., Bogdanov A.A. Anomalous Reflection from Hyperbolic Media//Progress in Electromagnetics Research, 2025, Vol. 182, pp. 85-94 Zhuravlev A., Kurenkov Y., Wang X., Dushko F., Zalipaev V., Glybovski S. Radiation-pattern synthesis with uniform nonlocal metasurfaces//Physical Review Applied, 2025, Vol. 23, No. 4, pp. 044052 | | | 4. Yermakov O., Lenets V.A., Sayanskiy A.D., Baena J., Martini E., Glybovski S.B., Maci S. Surface Waves on Self- | | | Complementary Metasurfaces: All-Frequency Hyperbolicity, Extreme Canalization, and TE-TM Polarization Degeneracy//Physical Review X, 2021, Vol. 11, No. 3, pp. 031038 | |---|--| | | 5. Solomakha G.A., Svejda J.T., Van Leeuwen C., Rennings A., Raaijmakers A., Glybovski S.B., Erni D. A self-matched leakywave antenna for ultrahigh-field magnetic resonance imaging with low specific absorption rate//Nature Communications, 2021, Vol. 12, No. 1, pp. 455 | | Key IPs | ✓ Ultra-high-field magnetic resonance imaging radiofrequency coil ✓ Power divider with phase shifter for base station antenna ✓ Eight-channel ultra-high-field magnetic resonance imaging radiofrequency coil ✓ Wireless power transmission device ✓ Wireless local transmit-receive coil for magnetic resonance imaging | | Supervisor's specific requirements | ✓ English language – upper-intermediate ✓ Knowledge of the theory of electromagnetism ✓ Knowledge in the field of microwave electronics technology | | Code of the subject area of the PhD program | 1.3.4 Radio Physics 2.2.14 Antennas, Microwave Equipment and Related Technology |